Question:

integrate 1/(sinx + cosx) dx

by Guest1962  |  12 years, 9 month(s) ago

0 LIKES UnLike

integrate 1/(sinx + cosx) dx

 Tags: 1sinx, cosx, DX, integrate

   Report

3 ANSWERS

  1. paafamily
    ∫ [1 /(cosx + sinx)] dx =

    multiply and divide the integrand by (cosx - sinx):

    ∫ {(cosx - sinx) /[(cosx + sinx)(cosx - sinx)]} dx =

    expand the denominator:

    ∫ [(cosx - sinx) /(cos²x - sin²x)] dx =

    break it up into:

    ∫ [cosx /(cos²x - sin²x)] dx + ∫ [- sinx /(cos²x - sin²x)] dx =

    rewrite the first denominator in terms of sinx and the second one in terms of cosx:

    ∫ {cosx /[(1 - sin²x) - sin²x]} dx + ∫ {- sinx /[cos²x - (1 - cos²x)]} dx =

    ∫ [cosx /(1 - sin²x - sin²x)] dx + ∫ [- sinx /(cos²x - 1 + cos²x)] dx =

    ∫ [cosx /(1 - 2sin²x)] dx + ∫ [- sinx /(2cos²x - 1)] dx (#)

    let us solve the first integral substituting sinx = t hence (differentiating both sides)
    d(sinx) = dt → cosx dx = dt, yielding:

    ∫ cosx dx /(1 - 2sin²x) = ∫ dt /(1 - 2t²) =

    factor the denominator as a difference of squares:

    ∫ dt /{1 - [(√2)t]²} =

    ∫ dt /{[1 - (√2)t][1 + (√2)t]} =

    decompose it into partial fractions:

    1 /{[1 - (√2)t][1 + (√2)t]} = A/[1 - (√2)t] + B/[1 + (√2)t]

    1 /{[1 - (√2)t][1 + (√2)t]} = {A[1 + (√2)t] + B[1 - (√2)t]} /{[1 - (√2)t][1 + (√2)t]}

    1 = A + (√2)At + B - (√2)Bt

    1 = (√2)(A - B)t + (A + B)

    hence:

    | (√2)(A - B) = 0
    | A + B = 1

    | A = B
    | B + B = 1

    | A = 1/2
    | B = 1/2

    yielding:

    1 /{[1 - (√2)t][1 + (√2)t]} = A/[1 - (√2)t] + B/[1 + (√2)t] = (1/2)/[1 - (√2)t] + (1/2)/[1 + (√2)t]

    thus the integral becomes:

    ∫ [1 /(1 - 2t²)+ dt = ∫ {{(1/2)/[1 - (√2)t]} + {(1/2)/[1 + (√2)t]}} dt =

    break it up pulling constants out:

    (1/2) ∫ {1 /[1 - (√2)t]} dt + (1/2) ∫ {1 /[1 + (√2)t]} dt =

    divide and multiply the first integral by (-√2), and the second one by (√2) so as to make each numerator the derivative of the respective denominator:

    (1/2)(-1/√2) ∫ {(-√2) /[1 - (√2)t]} dt + (1/2)(1/√2) ∫ {(√2) /[1 + (√2)t]} dt =

    [- 1/(2√2)] ∫ d[1 - (√2)t] /[1 - (√2)t]} + [1/(2√2)] ∫ d[1 + (√2)t] /[1 + (√2)t] =

    [- 1/(2√2)] ln |1 - (√2)t| + [1/(2√2)] ln |1 + (√2)t| + C =

    [1/(2√2)] [ln |1 + (√2)t| - ln |1 - (√2)t|] + C =

    recalling logarithms properties,

    [1/(2√2)] ln |[1 + (√2)t] /[1 - (√2)t]| + C

    thus, substituiting back sinx for t, you have:

    ∫ [cosx /(1 - 2sin²x)] dx = [1/(2√2)] ln |[1 + (√2)sinx] /[1 - (√2)sinx]| + C (##)


    the solution of the latter integral (see expression (#) above) is similar:

    ∫ [- sinx /(2cos²x - 1)] dx =

    let cosx = u → d(cosx) = du → - sinx dx = du

    ∫ [- sinx /(2cos²x - 1)] dx = ∫ du /(2u² - 1) = ∫ du /[(√2)u]² - 1] =

    ∫ du /{[(√2)u - 1][(√2)u + 1]}

    partial fraction decomposition

    1 /{[(√2)u - 1][(√2)u + 1]} = A/[(√2)u - 1] + B/[(√2)u + 1]

    1 /{[(√2)u - 1][(√2)u + 1]} = {A[(√2)u + 1] + B[(√2)u - 1]} /{[(√2)u - 1][(√2)u + 1]}

    1 = A[(√2)u + 1] + B[(√2)u - 1]

    1 = (√2)Au + A + (√2)Bu - B

    1 = (√2)(A + B)u + (A - B)

    | (√2)(A + B) = 0
    | A - B = 1

    | A = - B
    | - B - B = 1

    | A = 1/2
    | B = - 1/2

    yielding:

    1 /{[(√2)u - 1][(√2)u + 1]} = A/[(√2)u - 1] + B/[(√2)u + 1] =

    (1/2)/[(√2)u - 1] - (1/2)/[(√2)u + 1]

    hence:

    ∫ du /(2u² - 1) = ∫ {{(1/2)/[(√2)u - 1]} - {(1/2)/[(√2)u + 1]}} du =

    (1/2) ∫ du /[(√2)u - 1] - (1/2) ∫ du /[(√2)u + 1] =

    dividing and multiplying by √2,

    (1/2)(1/√2) ∫ (√2) du /[(√2)u - 1] - (1/2)(1/√2) ∫ (√2) du /[(√2)u + 1] =

    [1/(2√2)] ∫ d[(√2)u - 1] /[(√2)u - 1] - [1/(2√2)] ∫ d[(√2)u + 1] /[(√2)u + 1] =

    [1/(2√2)] ln |(√2)u - 1| - [1/(2√2)] ln |(√2)u + 1| + C =

    [1/(2√2)] [ln |(√2)u - 1| - ln |(√2)u + 1|] + C =

    [1/(2√2)] ln |[(√2)u - 1] /[(√2)u + 1]| + C =

    substituiting back cosx for u,

    ∫ [- sinx /(2cos²x - 1)] dx = [1/(2√2)] ln |[(√2)cosx - 1] /[(√2)cosx + 1]| + C (###)

    thus, plugging this and the previous (###) result into the above (#) expression, you have:

    ∫ [cosx /(1 - 2sin²x)] dx + ∫ [- sinx /(2cos²x - 1)] dx = [1/(2√2)] ln |[1 + (√2)sinx] /[1 -

    (√2)sinx]| + [1/(2√2)] ln |[(√2)cosx - 1] /[(√2)cosx + 1]| + C =

    [1/(2√2)] {ln |[1 + (√2)sinx] /[1 - (√2)sinx]| + ln |[(√2)cosx - 1] /[(√2)cosx + 1]|} + C =

    owing to logarithm properties,

    [1/(2√2)] ln |{[1 + (√2)sinx] /[1 - (√2)sinx]}{[(√2)cosx - 1] /[(√2)cosx + 1]|} + C

    thus, in conclusion:

    ∫ [1 /(cosx + sinx)] dx =

    [1/(2√2)] ln |{[1 + (√2)sinx][(√2)cosx - 1]} /{[1 - (√2)sinx][(√2)cosx + 1]}| + C

  2. Guest9547

    ∫▒cos⁡〖x□(24&dx)〗/√(1+sin⁡x )

  3. Guest3377

     I = integration of 1+sinx/1+cosx dx

Sign In or Sign Up now to answser this question!

Question Stats

Latest activity: 12 years, 10 month(s) ago.
This question has 3 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions